A New Parallel Approach to the Block Lanczos Algorithm for Finding Nullspaces over GF(2)

نویسندگان

  • Ildikó Flesch
  • Rob H. Bisseling
چکیده

Its goal is to propose a new parallel algorithm to calculate the nullspace of a given huge matrix, in the field of GF(2). This parallel algorithm is mainly based on the Block Lanczos algorithm, but it presents a new way for distributing the matrix elements as well as minimizing the communication time. This thesis contains the necessary theoretical background and concludes with experimental results. First of all, I wish to thank my supervisor, Rob Bisseling, for his guidance and inspiration. I would like to thank my brother, János Flesch, for the support he has given me during the last years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel GNFS Algorithm with the Biorthogonal Block Lanczos Method for Integer Factorization

Currently, RSA is a very popular, widely used and secure public key cryptosystem, but the security of the RSA cryptosystem is based on the difficulty of factoring large integers. The General Number Field Sieve (GNFS) algorithm is the best known method for factoring large integers over 110 digits. Our previous work on the parallel GNFS algorithm, which integrated the Montgomery’s block Lanczos a...

متن کامل

A Parallel GNFS Algorithm Based on a Reliable Look-Ahead Block Lanczos Method for Integer Factorization

The Rivest-Shamir-Adleman (RSA) algorithm is a very popular and secure public key cryptosystem, but its security relies on the difficulty of factoring large integers. The General Number Field Sieve (GNFS) algorithm is currently the best known method for factoring large integers over 110 digits. Our previous work on the parallel GNFS algorithm, which integrated the Montgomery’s block Lanczos met...

متن کامل

An improved parallel block Lanczos algorithm over GF(2) for integer factorization

RSA is one of the most popular algorithms for public-key cryptosystems. The security of this algorithm relies on the difficulty of factoring large integers. GNFS is the most efficient algorithm for factoring large integers over 110 digits, and solving the large sparse linear system over GF(2) is one of the most time-consuming steps in the GNFS. In the thesis proposal, an improved and more effic...

متن کامل

A Block Lanczos Algorithm for Finding Dependencies Over GF(2)

Some integer factorization algorithms require several vectors in the null space of a sparse m x n matrix over the field GF(2). We modify the Lanczos algorithm to produce a sequence of orthogonal subspaces of GF(2)", each having dimension almost N, where N is the computer word size, by applying the given matrix and its transpose to N binary vectors at once. The resulting algorithm takes about n ...

متن کامل

An integrated parallel GNFS algorithm for integer factorization based on Linbox Montgomery block Lanczos method over GF(2)

Integer factorization is known to be one of the most important and useful methods in number theory and arithmetic. It also has a very close relationship to some algorithms in cryptography such as RSA algorithm. The RSA cryptosystem is one of the most popular and attractive public-key cryptosystems in theworld today. Its security is based on thedifficulty of integer factorization. Solving a larg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002